skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seshan, Srinivasan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. World-scale augmented reality (AR) applications need a ubiquitous 6DoF localization backend to anchor content to the real world consistently across devices. Large organizations such as Google and Niantic are 3D scanning outdoor public spaces in order to build their own Visual Positioning Systems (VPS). These centralized VPS solutions fail to meet the needs of many future AR applications---they do not cover private indoor spaces because of privacy concerns, regulations, and the labor bottleneck of updating and maintaining 3D scans. In this paper, we present OpenFLAME a federated VPS backend that allows independent organizations to 3D scan and maintain a separate VPS service for their own spaces. This enables access control of indoor 3D scans, distributed maintenance of the VPS backend, and encourages larger coverage. Sharding of VPS services introduces several unique challenges---coherency of localization results across spaces, quality control of VPS services, selection of the right VPS service for a location, and many others. We introduce the concept of federated image-based localization and provide reference solutions for managing and merging data across maps without sharing private data. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  2. Free, publicly-accessible full text available September 19, 2026
  3. The emergence of the Spatial Web -- the Web where content is tied to real-world locations has the potential to improve and enable many applications such as augmented reality, navigation, robotics, and more. The Spatial Web is missing a key ingredient that is impeding its growth -- a spatial naming system to resolve real-world locations to names. Today's spatial naming systems are digital maps such as Google and Apple maps. These maps and the location-based services provided on top of these maps are primarily controlled by a few large corporations and mostly cover outdoor public spaces. Emerging classes of applications, such as persistent world-scale augmented reality, require detailed maps of both outdoor and indoor spaces. Existing centralized mapping infrastructures are proving insufficient for such applications because of the scale of cartography efforts required and the privacy of indoor map data.In this paper, we present a case for a federated spatial naming system, or in other words, a federated mapping infrastructure. This enables disparate parties to manage and serve their own maps of physical regions and unlocks scalability of map management, isolation and privacy of maps. Map-related services such as address-to-location mapping, location-based search, and routing needs re-architecting to work on federated maps. We discuss some essential services and practicalities of enabling these services. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  4. Recent congestion control research has focused on purpose-built algorithms designed for the special needs of specific applications. Often, limited testing before deploying a CCA results in unforeseen and hard-to-debug performance issues due to the complex ways a CCA interacts with other existing CCAs and diverse network environments. We present CC-Fuzz, an automated framework that uses genetic search algorithms to generate adversarial network traces and traffic patterns for stress-testing CCAs. Initial results include CC-Fuzz automatically finding a bug in BBR that causes it to stall permanently, and automatically discovering the well-known low-rate TCP attack, among other things. 
    more » « less
  5. Real-time interactive video streaming applications like cloud-based video games, AR, and VR require high quality video streams and extremely low end-to-end interaction delays. These requirements cause the QoE to be extremely sensitive to packet losses. Due to the inter-dependency between compressed frames, packet losses stall the video decode pipeline until the lost packets are retransmitted (resulting in stutters and higher delays), or the decoder state is reset using IDR-frames (lower video quality for given bandwidth). Prism is a hybrid predictive-reactive packet loss recovery scheme that uses a split-stream video coding technique to meet the needs of ultra-low latency video streaming applications. Prism's approach enables aggressive loss prediction, rapid loss recovery, and high video quality post-recovery, with zero overhead during normal operation - avoiding the pitfalls of existing approaches. Our evaluation on real video game footage shows that Prism reduces the penalty of using I-frames for recovery by 81%, while achieving 30% lower delay than pure retransmission-based recovery. 
    more » « less